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Preface

This sentence no verb

Hofstadter 1979

Undoubtedly words have meanings. You can find it in a dictionary. Now,
how concrete or how permanent the meaning is, it is of course, an other
story. But words, nevertheless, do have meanings.

The point is that the meanings of the words by themselves are not
enough in order for someone to communicate, or at least to communicate
well. What is additionally needed for communication, is a correct order-
ing of the words. For example consider the words: “Good”, “remorse”,
“to”, “is”, “lost”, “Farewell”, “my”, “me”, “thou”, “be”, “good”, “Evil”. If
we arrange them in the order they are given, we get:

Good remorse to is lost Farewell my me thou be good Evil

Does this convey any sort of meaning to you? I doubt it. What about
another ordering:

Farewell remorse! All good to me is lost; Evil, be thou my
Good.1

The tool by which we arrange words is called grammar . A grammar, as
we shall more formally see in Chapter 1, is nothing more than a bunch
of rules, by means of which we arrange words so that they will produce
meaningful utterances or sentences. People, most of the times, use gram-
matical sentences in order to communicate. Those grammatical sentences
are part of what is called a Natural Language . Natural Languages are, for
example, English, Greek, Chinese etc.

1Incidentally, that arrangement of the particular words, forms an excerpt from John
Milton’s Paradise Lost.
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As I said, people most of the times use grammatical sentences, but that
needn’t have to be always the case. For example, consider the quotation
on top of this preface, taken from Hofstadter’s book Gödel, Escher, Bach.
What that sentence confesses to us, is that it has no verb, and it is doing
so without actually having one! Technically speaking, that sentence is an
ungrammatical one, and it should be thrown away as nonsense. But it just
somehow manages to pass over the meaning it wants to convey, that we
actually understand it. The mechanism underneath all it, could vaguely
be stated as intuition , the filling in, in other words, of the missing infor-
mation (the verb has in this case).

Machines, on the other hand, have no intuition about Natural Lan-
guages. So, in order to make them acquire some sort of understanding,
we employ grammars. More details on grammars you shall find in the
rest of this report.

* * *

On Grammars grew during my stay as a scholar to the N.C.S.R. “Demo-
kritos” and there is a number of people that I would like to thank for
their support. I am greatly indebted to Ion Androutsopoulos, Vangelis
Karkaletsis, George Paliouras and George Petasis for their continuous sup-
port and advices. I simply knew that they would be there, in case I needed
them. Alexandros Gregoriadis, George Samaritakis and George Sigletos,
furthermore, were an excellent company for me during our breaks. In gen-
eral, all the people of the I.I.T. institute, here in Demokritos, made me feel
like home, from the first moment I came. I am grateful to all of them.

At this point I must confess to you that, since I was a little boy, I used to
love rain, in all its manifestations, not only metaphorically speaking. But,
once there came a storm in the form of a girl. So cruel and engulfing that
storm was, that I felt like I was drawn in it.

Fortunately, that storm is over now and I am alive, despite the heavy
memories. The impact on me of those heavy memories was that a constant
dislike and fear grew inside me for storms. Yet, when I in retrospect, look
back to that storm, as certain clarity prevails, I can very clearly discern that
it was not the storm by itself that I should fear. After all, there are so many
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forms of storms, not all of them dilapidating. It simply was that particular
storm.

As a matter of fact, some elaborate clouds have gathered, and it already
has been raining. But it is not a storm this time. It is a joyful merry spring
rain pouring. And the sense of it is so refreshing and revitalizing! To this
refreshing spring rain I dedicate this report. If only it was pouring a little
bit heavier!



Chapter 1

Introduction

The grammatical structure of a sentence, is of vast importance to Natural
Language Processing (NLP). One of the struggles of NLP is how to at-
tribute such a grammatical structure to a given sentence. For example, a
certain sentence may be attributed with a number of syntactic structures,
and this information is used during, say, the semantical analysis, among
other things. Not all sentences, of course, can be attributed with a gram-
matical structure, for some of them may be ungrammatical ones.

But what exactly does it mean that a certain sentence is an ungrammat-
ical one? Well, a sentence is said to be an ungrammatical one if and only
if it is not a grammatical one. But this doesn’t sell much to us, for we need
some kind of tool, by means of which we will be able to discriminate be-
tween grammatical and ungrammatical sentences. Fortunately such a tool
exists and this is grammar.

1.1 But what is a Grammar?

This report deals with grammars, so it would be useful if we defined what
a grammar is. According to Chomsky (1957) a grammar of a certain lan-
guage is a device that produces “all of the grammatical sequences of that
language and none of the ungrammatical ones .” In other words, a gram-
mar is a tool, or a bunch of rules and symbols as we shall see, the appliance
of which creates a, maybe infinite, set. That set contains all of the gram-
matical sentences and none of the ungrammatical ones.

If we want to formally define grammars we shall have to employ some
mathematical notations. So, formally a grammar is a 4-tuple G = (V N , VT ,

P, S0) where:

1. VN is a set of non-terminal symbols.
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For example syntax categories like ’verb’ and ’noun phrase’ are non-
terminal symbols. Non-terminal symbols can be further decomposed.

2. VT is a set of terminal symbols.
For example, words such as ’I’, ’coherence’, ’crack’, ’beauty’ and
’dawn’ are terminal symbols. Terminal symbols cannot be further
decomposed and a structure called lexicon is usually employed in
order to maintain all the words that fall into that set.

3. P is a set of grammatical rules, or productions.
Production rules are of the form α → β where α, β are sequences
of symbols over the set (VN

⋃
VT ) and α contains at least one non-

terminal symbol.

4. S0 ∈ VN is a start symbol, which initiates the derivation sequences.

Of course if we want to check if a sentence is a grammatical one we al-
most never create the set which the grammar produces and check whether
that sentence belongs to that set or not. Instead we create a parser based
on that grammar, which examines if a sentence can be generated by the
grammar and if it does it, furthermore, returns to us one or all the parse
trees1. In this report we shall not discuss parsers at all.

1.2 Chomsky’s Hierarchy

What we shall discuss in this report is grammars. Chomsky (1957) clas-
sified grammars into four big categories, according to their generative
capacity. This classification of grammars is now known as the Chomsky
Hierarchy and is depicted in figure 1.1 on the next page. This classifica-
tion forms a hierarchy because the set of languages produced by a weaker
grammar, say type 3 grammar, is a proper subset of the set of languages
produced by a grammar that is above it, say, type 2 grammars. In other
words, a language produced by a grammar of type 3, can be produced by
a grammar of type 2, but not vice versa. In mathematical notation we can
say the following:

1A parse tree, as its name suggests, is a tree whose structure depicts the process by
which a certain sentence was produced, according to the rules of grammar. See section 3.2
on page 12 for more details.
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Fig. 1.1: The Chomsky Hierarchy of Grammars

type 3 ⊂ type 2 ⊂ type 1 ⊂ type 0

As we have earlier said in this report, we are not going to talk about
parsers. But we are going to talk about automata and their correspondence
between the grammars of the Chomsky Hierarchy. Sometimes parsers are
implemented as automata, and there is a good reason in doing so. It can be
shown that for every type of grammar there is a corresponding automaton
that produces or recognizes exactly the same language, the same set of
strings in other words. So, as we examine every type of grammar, we shall
see which automata are equivalent to which grammar.

In Chapters 2 through 4 we shall discuss the Chomsky hierarchy in more
detail. In particular, Chapter 2 is concerned with Finite State Grammars
and Finite State Automata, Deterministic and Non-Deterministic. In Chap-
ter 3, we discuss Context Free Grammars and Pushdown Automata. Fi-
nally the Chomsky Hierarchy of Grammars is completed in Chapter 4
where we discuss the top two categories of the Chomsky Hierarchy, Con-
text Sensitive Grammars and Unrestricted Grammars, and say a few words
about Linear-Bounded Automata and Turing Machines. In section 4.3 we
present some of the reasons why the top two categories are rarely used in
Natural Language Processing.



Chapter 1. Introduction 4

1.3 Probabilistic Grammars

When constructing a grammar one replenishes it with a lot of rules, some
of which, are not that commonly used. Nevertheless, those rules are there
so that the grammar will be complete; that is, it will be able to assign a
syntactic structure to as many sentences as possible. The problem with
such an approach, is that the parser will return to us a set of parse trees for
a sentence, some of which may be somewhat intangible. In other words,
among the many parse trees, there may exist one or two which are less
probable than the rest.

Furthermore, grammars sometimes employ recursion in order to cap-
ture several linguistic phenomena. Applying though the recursive rules,
over and over again, some funny sentences (such as "The boy held the puppy
on the wall by the hill with the kitten. . . ") may emerge. Technically speaking,
the previous sentence is a grammatical one, yet it is a very rare one and
thus not probable to appear.

It would be useful to have a measure to rank which sentences are more
probable. This is accomplished with Probabilistic Grammars. Probabilistic
Grammars are defined exactly as we defined grammars on page 1, only
that now with every rule we associate a probability. The result is that
when the parser returns to us the parse trees of a sentence, it furthermore
attaches a probability with each one. That probability can be later used in
order to determine which one of all the parse trees was probably intended,
so we can ignore peculiar or improbable syntactic constructions.

Probabilistic Grammars are extensively used in Statistical Natural Lan-
guage Processing (Manning and Schütze 1999a). Actually, what is mostly
used is their equivalent manifestations, the Stochastic Automata (Parekh
and Honavar 2000). A very simple, yet powerful, stochastic automaton is
the Hidden Markov Model. In Chapter 5 we begin our exploration of Prob-
abilistic Grammars, not with a Probabilistic Grammar, but by presenting
the Hidden Markov Models and their mathematical properties. The rea-
son is that, given a Probabilistic Regular Grammar, we can easily employ
an equivalent Hidden Markov Model and so we can efficiently compute
the probability of a sentence, as discussed in section 6.1 on page 28.

In Chapter 6 we discuss Probabilistic Regular Grammars, their connec-
tion with Hidden Markov Models, and we furthermore present the Aler-
gia Algorithm, which is used for automatic grammar inference. Finally, in
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Chapter 7 we discuss Probabilistic Context Free Grammars and provide
some of the reasons why they are worth studying.



Chapter 2

Finite State Grammars

Finite State Grammars (FSGs) or type 3 grammars, are the weakest gram-
mars in terms of generative capacity. They are the weakest because we re-
strict their production rules, so that the right hand side of them is allowed
to introduce at most one non-terminal symbol. Thus type 3 grammars
employ rules of the following form1 (Hopcroft and Ullman 1979):

1. A → a

2. A → aB

3. A → Ba

What those rules tell us, is that a non-terminal symbol may be substi-
tuted by a terminal one, or by a combination of one terminal symbol and
one non-terminal symbol. At the end, of course, all non-terminal symbols
should be substituted with terminals.

Note than while constructing such a grammar we are not allowed to
write down together rules such as the second and third of the above ex-
ample. A Finite State Grammar may have either production rules such as
the second or production rules such as the third.

2.1 Left and Right Linear Grammars

If a Finite State Grammar employs rules of the form 1 and 3 but not of the
form 2 of the above example, then it is said to be a Left Linear Finite State
Grammar.

1As a standard convention we shall use lowercase letters for terminal symbols and
uppercase letters for non-terminal ones, throughout this report.
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If, on the other hand, a Finite State Grammar employs production rules
of the form 1 and 2 but not of the form 3, then it is said to be a Right Linear
Finite Sate Grammar.

A right linear or a left linear grammar is called a regular grammar .

Once again, it is essential to understand here that production of the
second and third form should not be mixed up, for, if we do so, we en-
hance the generative capacity of Finite State Grammars and make them
equivalent to type 2 or Context-Free Grammars2.

An example of a Finite State Grammar

As an example of an FSG consider the following grammar G:

S → aA

A → aA

A → b

This grammar will produce the following language: L(G) = {anb | n =

1, 2, . . .}

2.2 Finite State Automata

Finite State Automata (FSAs) are the kind of automata that are equivalent
to Finite State Grammars. In other words, if we are given an FSG then we
can construct an equivalent FSA which accepts exactly the same language
as the FSG does. FSAs, generally, are divided into two big categories: de-
terministic FSAs and non-deterministic FSAs.

Formally we define a deterministic finite state automaton as a quintu-
ple M = {K, Σ, δ, s, F} where

• K is a finite set of states

• Σ is an alphabet

• s ∈ K is the initial state

• F ⊆ K is the set of final states, and
2Chapter 3 on page 11 deals with Context-Free Grammars.
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• δ is the transition function from K × Σ to K

Remaining formal, we define a nondeterministic finite state automa-
ton as a quintuple M = {K, Σ, ∆, s, F} where

• K is a finite set of states

• Σ is an alphabet

• s ∈ K is the initial state

• F ⊆ K is the set of final states, and

• ∆ is the transition relation from K × (Σ
⋃
{e}) to K

where e denotes the empty string.

As we can observe, the only difference between deterministic and non-
deterministic FSAs is that deterministic automata define a transition func-
tion whilst non-deterministic define a transition relation and furthermore
they may have silent transitions, transitions made with the empty string,
in other words. Nevertheless, it can be shown that non-determinism does
not add anything to the power of FSAs and that deterministic and non-
deterministic FSAs are actually equivalent3.

An example of a non-deterministic automaton is shown in Figure 2.1.
This automaton is equivalent to the example grammar on the preceding
page. Its equivalent deterministic automaton is depicted in Figure 2.2 on
the next page. The initial states are the ones with a sort of arrow attached
to them. The final states are the ones with a black circle inside them.

Fig. 2.1: A non-deterministic FSA

3See for example: (Lewis and Papadimitriou 1998; Afantenos 2000).
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Fig. 2.2: A deterministic FSA

2.2.1 How do Finite State Automata work?

FSAs in order to examine if a string belongs to the language that they ac-
cept, they start from an initial state, which resembles the way that gram-
mars work starting from a start symbol S0 for the production of a string,
and proceed according to the input that they read. Every time that they
read a symbol they move to another state, according to their transition
rules, and shift their attention to the next symbol of the input. If the input
is finished and the automaton is on a final state, then it accepts the input
string; in any other case the automaton does not accept the input string.

Deterministic FSAs, regardless of the state they are in and the input
they read, they have exactly one choice to make, defined by their transition
function. Non-deterministic automata, on the other hand, they may have
more than one choices to make, so before deciding if they accept the input
or not, they have to explore all the paths. If at least one path leads to
acceptance, that is they find themselves on a final state with all the input
string consumed, then they declare acceptance of the string. If none of the
paths leads to acceptance, then they do not accept the input string.

Deterministic FSAs take linear time in order to decide about the accep-
tance of a string. Non-deterministic FSAs, on the other hand, take expo-
nential time in the worst case for the same thing. Given a grammar of type
3 now, one needs linear time to transform that grammar to its equivalent
non-deterministic automaton. Sedgewick (1988) employs a different kind
of automata in order to make the whole process run in time linear to the
product of the number of states of the automaton and the length of the text.
See also (Afantenos 2000) for an implementation of such an approach.
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2.2.2 Finite State Transducers

Finite State Transducers (FSTs) work exactly as the FSAs do, apart from the
fact that they operate on two tapes, instead of one that the FSAs do. Thus,
their transition relations or functions are defined on the manipulation of
two sets of symbols. What we can do with the two tapes it depends on the
task at hand. For example we may have both tapes work as an input to the
FST, or we may have the first tape serve as an input and the second tape
serve as an output, which is the most common practice.

As an example of use of FSTs, Gazdar and Mellish (1989) report that
FSTs are used in computational phonology. Allen (1995), furthermore, says
us that FSTs are extensively used during morphological analysis.
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Context-Free Grammars

The immediate more powerful type of grammars are the type 2 or Context-
Free Grammars (CFGs). Their production rules are of the form:

A → χ

where A ∈ VN and χ is a sequence of one or more symbols in the union
set (VT

⋃
VN)1 or even the empty string e (Hopcroft and Ullman 1979). In

other words on the left-hand side of a rule we may have one non-terminal
symbol and on the right-hand side a combination of terminal and non-
terminal symbols.

Now, consider the following language:

anbn

That is, we want n occurrences of a followed by exactly n occurrences of
b. First of all, such a structure is not only a game, but is a phenomenon
that takes place in a natural language and we would like our grammar to
capture it. For example the following sentence is plausible2:

A doctor (whom a doctor)n (hired)n hired another nurse.

Is there any way that we could capture such a phenomenon into a
grammar? Certainly no, if the grammar is a Finite State Grammar. Hard
as you may try you will not be able to construct a type 3 grammar, for
such grammars do not allow recursiveness , and this phenomenon cries
for recursion.

1Remember, VT is the set of terminal symbols and VN is the set of non-terminal sym-
bols, as discussed in section 1.1 on page 1.

2Adopted by (Gazdar and Mellish 1989, pg. 135).
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3.1 Context-Free Grammars and Recursion

Type 2 grammars, on the other hand, allow us to rewrite the left hand side
of a rule as an arbitrary sequence of terminal and non-terminal symbols,
and exactly through this, recursion is realized. For example a grammar for
the aforementioned language is shown in Figure 3.1.

S → aSb

S → e

Fig. 3.1: A Context-Free Grammar

This grammar is a recursive one, because it enables us to apply the first
or second production rule as many times as it is required.

3.2 Derivation Trees for Context-Free Grammars

A derivation or parse tree of a grammar is a tree which depicts, in a sense,
the steps followed in order to arrive at a particular instance of the language
described by the grammar. Its root is the start symbol S0, its interior nodes
are the non-terminal symbols VN and its leafs are the terminal symbols
VT or the empty string e. If an interior node is labelled with A and its
daughters are labelled with X1, X2, . . . , Xk from left to right, then A →
X1X2. . . Xk must be a production rule.

Fig. 3.2: Derivation Tree of the string aabb

For example, consider the language described on the preceding page.
An instance of this language is the string aabb and its derivation tree is



Chapter 3. Context-Free Grammars 13

shown in Figure 3.2 on the page before. From this tree we can see that the
production rule S → aSb has been applied twice, and the production rule
S → e has been applied once.

Let us now describe a derivation tree more formally. Hopcroft and
Ullman (1979) say that a tree is a derivation tree of a grammar G = (V N ,

VT , P, S0) if

1. Every vertex has a label, which is a symbol of VT

⋃
VN

⋃
{e}

2. The label of the root is S0, the start symbol.

3. If a vertex is interior and has label A, then A must be in VN .

4. If n has label A and n1, n2, . . . nk are the daughters of vertex n, in
order from the left, with labels X1, X2, . . . , Xk, respectively, then

A → X1X2. . . Xk

must be a production in P .

5. If vertex n has label e, then n is a leaf and it is the only daughter of
its father.

3.3 Ambiguity

Lets consider now the following grammar

1. S → NP V P

2. V P → V NP

3. V P → V

4. V P → V S

5. NP → Det N

6. NP → I

7. V → saw



Chapter 3. Context-Free Grammars 14

8. Det → her

9. N → duck

10. NP → her

11. V → duck

A sentence that this grammar is able to produce is the: I saw her duck .
Two different derivation trees of that sentence are depicted in Figures 3.3
and 3.4. Now, if a Context-Free Grammar is able to produce two, or more,
different derivation trees for a sentence, then such a grammar is said to be
an ambiguous grammar.

Fig. 3.3: A derivation tree for the sentence I saw her duck

Simplification of Context-Free Grammars

Not all CFGs though are ambiguous. Even if a grammar is ambiguous, we
may be able to construct an equivalent grammar (i.e. one that generates
exactly the same language) which is not ambiguous3.

3See for example (Hopcroft and Ullman 1979; Lewis and Papadimitriou 1998).
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Fig. 3.4: Yet another derivation tree for the sentence I saw her duck

Inherently Ambiguous Context-Free Grammars

Nevertheless, it can be shown (Hopcroft and Ullman 1979, pg. 99) that
there are some languages which are inherently ambiguous. In other words,
there exist languages, for which every Context-Free Grammar which pro-
duces them is an ambiguous one.

3.3.1 NLP and Ambiguity

Though we may be able to construct an equivalent non-ambiguous gram-
mar, to the one at hand, sometimes we prefer to keep the ambiguous one.
The reason for doing so, is that the ambiguity of a sentence may reveal
useful things to us.

For example, in Figures 3.3 and 3.4 we can see two derivation trees for
the sentence I saw her duck , which were constructed by the grammar
on page 13. The first derivation tree asserts that the word duck is a noun
and that somebody saw a bird (duck) which belonged to a woman. The
second derivation tree asserts that the same word (duck ) is a verb, and
that somebody saw a woman taking an action, namely duck.

So, this two different derivation trees reveal to us that the author of the
sentence probably meant one of two things. This sentence exhibits com-
bined lexical and structural ambiguity. The ambiguity is then resolved
during the semantical analysis (Gazdar and Mellish 1989; Allen 1995). Fur-
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thermore, in section 7.2.4 we are going to see an other way of resolving this
ambiguity, by introducing probabilities to the rules of CFGs.

3.4 Pushdown Automata

Once more, consider the language on page 11 and the grammar on Figure
3.1 which produces that language. We would like to have a machine, an
automaton, which will be able to recognize, or produce, all the instances
of that language and only those. Such a machine, it seems, should have
some kind of memory, for it must keep track of the number of a’s it read,
before reading any b’s.

The automata that are equivalent to the CFGs are called Pushdown
Automata and they exhibit some kind of memory, the stack . Additionally,
they have, exactly as the FSAs an input tape, a set of states and an internal
mechanism for altering states.

What is a stack?

The stack is a place that allows the automaton to store several items, but it
does not allow it to have access to all of the elements that it stored. What
the automaton is able to see, or retrieve, is just the top element of the
stack. Furthermore, the automaton cannot store an element wherever in
the stack it wants to; it can store an element only on the top of the stack.
Thus a stuck is, essentially, a first-in-last-out list.

A stack enables an automaton to operate in two-fold a way on it. The
first operation is called pop . If we pop we remove the top element from
the stack and, thus, the second element becomes now the top element of
the stack. The other operation is called push . If we push an element
onto the stack then that element becomes the top element of the stack,
and what was previously the top becomes the second element of the stack.
According to implementation, stacks may come equipped with a special
symbol which denotes the bottom of the stack.

3.4.1 How do Pushdown Automata work?

As we have mentioned, a pushdown automaton has an input tape, a finite
control and a stack . This device is a non-deterministic one and it will
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have some finite set of choices of moves to make at each step. The moves
will be of two types. In the first type of move the automaton examines
the next input symbol. The automaton then considers that input symbol,
the state which the automaton is in and the symbol at the top of the list
and according to this triple it may change its state and replace the top
symbol of the stack with a string of symbols, possibly empty. Afterwards,
it advances the input pointer one position.

The other type of move is usually called an e-move. While performing
an e-move, the automaton, does not take under consideration the input
tape. It just examines the state it is in and the top of the stack, and accord-
ingly it changes a state and replaces the top of the stack with a string of
symbols, possibly an empty string. At the end, it does not advance the
input pointer.

Pushdown automata accept an input string in two-fold a way. In the first
case they accept a string of symbols if they have consumed all of it and
their input stack is empty.

In the second case we designate some states as the final states. The
automaton accepts an input string if, upon consuming it, it finds itself on
a final state.

3.4.2 Formal Definition

Formally a pushdown automaton M is a septuple (Q, Σ, Γ, δ, q0, Z0, F ),
where4

• Q is a finite set of states

• Σ is an alphabet, called the input alphabet

• Γ is an alphabet, called the stack alphabet

• q0 ∈ Q is the initial state

• Z0 ∈ Γ is a particular stack symbol, called the start symbol

• F ⊆ Q is the set of final states

• δ is a mapping from Q×(Σ
⋃
{e})×Γ to finite subsets of Q×Γ∗ where

∗ is the operation of closure

4adopted by Hopcroft and Ullman (1979).
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The Top Two Categories of the Chomsky Hierarchy

In this chapter we shall discuss about the top two categories in the Chom-
sky Hierarchy, type 1 and type 0, or Context-Sensitive and Unrestricted
Grammars. We are not going to expand a lot on the mathematical issues
that emerge; instead we are going to limit ourselves in some basic notions
and definitions. The reason for this will become apparent as you read sec-
tion 4.3.

4.1 Context-Sensitive Grammars

The next more powerful type of grammars in the Chomsky Hierarchy,
than Context-Free Grammars, are the type 1 grammars or Context-Sen-
sitive Grammars (CSGs). Their production rules are less limited than type
3 or type 2 grammars. They are of the form

α → β

where α and β are arbitrary sequences of symbols in VN

⋃
VT and |α| ≤ |β|.

In other words, the only restriction we place on CSGs is that β must be at
least as long as α.

Context-Sensitive Grammars have production rules of the form

α1Aα2 → α1βα2 , where β 6= e

In other words, A is replaced by β in the context α1 — α2. Thus the term
Context-Sensitive was coined.

Almost every language that one can imagine is a Context-Sensitive Lan-
guage. Certain languages have been shown to be type 0 languages1 but

1See section 4.2 on the next page.
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the only known way of proofing that, is diagonalization (Hopcroft and
Ullman 1979, pg. 224).

4.1.1 Linear-Bounded Automata

The class of automata which are equivalent to the Context-Sensitive Gram-
mars, are the Linear-Bounded Automata (LBAs). Linear-Bounded Auto-
mata are a somewhat restricted version of Turing Machines. Restricted in
the sense that we do not allow them to operate on an infinite tape. Instead
an LBA is a Turing machine that confronts to the following two conditions:

• Its input alphabet includes two special symbols £ and $, the left and
right endmarkers respectively

• The LBA has no moves left from £ or right from $, nor may it print
another symbol over £ or $

Thus, a Linear-Bounded Automaton is a Turing machine with a certain
portion of tape to operate on. Apart from that portion of tape, the automa-
ton, cannot either read or write anything. It cannot even modify the left or
right endmarker.

4.2 Unrestricted Grammars
or

Recursively Enumerable Sets

The last type of grammars in the Chomsky Hierarchy are the type 0 or Un-
restricted Grammars or Recursively Enumerable Sets, as they are some-
times called. Their production rules pose almost no restriction at all. They
are of the form

α → β where α 6= e

So, almost every rule that one can can imagine is a valid production of
type 0 grammars.
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4.2.1 Turing Machines

The type of devices that are equivalent to the Unrestricted Grammars are
the Turing Machines. Turing Machines were firstly been proposed by the
famous British mathematician Allan Turing as a model of computation.
Nowadays every computer is considered to be equivalent to a Turing Ma-
chine.

In their simplest form, Turing Machines have a Finite control composed
of states, an input tape that is divided into cells and a head that scans one
symbol of the tape at a time. The cells of the tape each contain a single
symbol. The tape has a start symbol located at the left of the tape, but it is
infinite at the right side.

When the machine starts its operation the n first symbols adjacent to
the start symbol of the tape are the input symbols. The rest symbols of the
tape are infinite and contain a special symbol called the blank symbol.

How Turing Machines Work?

The way that Turing Machines operate is very simple. At every move the
head scans the symbol of the tape cell that it is on, and according to that
symbol and the state that the machine is in, it prints a symbol on the tape
cell scanned, replacing what was there, and it either moves right or left.

It is amazing that such a simple device, at least in working, is equiva-
lent to every computer and it is able to capture the intuitive notion we have
of a computation. For more information on Turing Machines the inter-
ested reader should consult Lewis and Papadimitriou (1998) or Hopcroft
and Ullman (1979).

4.3 The Top Two Categories and NLP

Considering the great generative capacity of Context-Sensitive or Unre-
stricted Grammars, one thinks that those grammars are well suited for
NLP and that most work on NLP should employ Context-Sensitive or Un-
restricted Grammars, one way or another. Context-Sensitive Grammars,
one might well think, are able to capture more linguistic phenomena; thus,
they must be widely used. But this is not the case.

One reason for not using the top two categories of the Chomsky Hier-
archy, is that the Linear Bounded Automata or Turing Machines, are more
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complicated devices and they need more computational power. Turing
Machines, for example, are able to compute something (if it is computable
at all), but they never tell us when are they going to compute it. In other
words, a specific algorithm, which simulates a Turing Machine, may take
centuries to yield a result.

Another reason is that, when constructing a grammar, one wants to
balance between generative capacity and simplicity. Simplicity has the ad-
vantage, that further modifications, or extensions, to the initial grammar
will be easily incorporated. CFGs provide a fairly good generative capac-
ity, while maintaining simplicity at the same time. On the other hand, the
enhancement of generative capacity one gets when she employs CSGs, is
most of the times, not of much use. The reason is that phenomena which
really need CSGs in order to be captured appear, very infrequently in most
of the natural languages.

So, the need for balance between simplicity and generative capacity,
has led many researchers in NLP to rarely use the top two categories of
the Chomsky Hierarchy.
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Hidden Markov Models

Hidden Markov Models (HMMs) were first introduced by Andrei A. Mar-
kov1 as a general statistical tool, but since then they have been the main-
stay in Statistical modelling of modern speech recognition systems and
Natural Language Processing Systems (Manning and Schütze 1999a).

Formally, we define a Hidden Markov Model as a quadruple M = (s1,

S, W, E) where

• S = (s1, s2, . . . , sσ) is a set of states.

• s1 ∈ S is the initial state of the model.

• W = (w1, w2, . . . , wω) is a set of output symbols.

• E = (e1, e2, . . . , eε) is a set of transitions.

Note, that the elements of the sets S, W and E have been ordered. Fur-
thermore, they have been given superscripts. This is a convention in no-
tation we use, in order to distinguish between the ith element, say si of
the set S, and si the state at the ith time unit2. Moreover, we shall denote
a sequence of states sisi+1 . . . sj as si,j . The same applies to a sequence of
output symbols etc.

An HMM can be thought of either as an acceptor or as a generator, in
quite the same sense that an FSA is an acceptor or generator. If we have
an FSA we can feed it with a string and see whether it accepts it or not, in
which case it acts as an acceptor; or we can make it generate all the strings
of the language that it produces, in which case it acts as a generator. On
the other hand with an HMM things are not that black and white. We have

1Andrei Markov was a student of Chebysev.
2More details you can find on the following page.
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shades of acceptance, if I am allowed to use such an expression. In other
words, what an HMM does, is to attribute a probability to every sentence
that either it reads or produces. In case the probability is zero, we can say
that the HMM does not accept or does not produce that string.

The graphical representation of an HMM resembles a lot that of an
FSA. The difference is that now on each transition we can find a probabil-
ity. Thus a transition is defined as a four-tuple (si, sj, wk, p), which means
that we move from state si to state sj upon reading the symbol wk with

probability p. More often we write si wk

→ sj to express the same thing. In

this case then p = P (si wk

→ sj).
We can think about the graphical representation of an HMM as a com-

plete graph. That is, every pair of states is connected with a transition.
In cases where a certain transition has probability zero, it can be omitted
from the graphical representation. Furthermore, no two transitions are al-
lowed to have the same starting and ending states, as well the same output
symbols.

Note that from a state α several transitions, bearing the same output
symbol, may emit, leading to different states. What this implies is that we
can not know what state the machine has gone into, simply by looking at
the output symbol. Generalizing, we cannot know what path an HMM
followed, in order to produce or accept a string. The path is hidden3.

We can think that the time for HMMs is not continuous but discrete,
and thus advances in ticks. The HMM starts in state s1, it outputs, or
accepts, a symbol w1 with a probability and advances to state s2

†. Then,
on the second tick it outputs, or accepts, w2 with some probability, and
moves to state s3, and so on. Thus, at time tick n it outputs wn and moves
on to state sn+1. So there are n + 1 states for n outputs.

Now, there is a relations between those ticks and the probability of a

transition si wk

→ sj . P (si wk

→ sj) is defined as the probability that at any time
t the HMM outputs the tth symbol wk and goes to the (t + 1)st state, sj

3That is why we call such machinery a Hidden Markov Model!
†Remember, that s2 corresponds to the second time unit, whereas s2 refers to the sec-

ond symbol in the set S.
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given that the tth state was si. More formally

P (si wk

→ sj)
def
= P (St+1 = sj, Wt = wk|St = si) 1 ≤ t (5.1)

= P (sj, wk|si) (5.2)

where equation 5.2 can be used as an abbreviation if it is understood that
state si is a state just prior to the state sj .

HMMs are useful because we can create a Stochastic model and then
compute the probability of appearance of a certain sequences. The next
section deals with the calculation of such probabilities.

5.1 Probability of a Sequence

Say, we have a sequence w1,n and we want to calculate the probability of
its appearance in our Hidden Markov Model. The probability is

P (w1,n) =
∑

s1,n+1

P (w1,n, s1,n+1) (5.3)

where s1,n+1 varies over all possible sequences. In other words, the proba-
bility of a sequence is the sum of the probabilities of all possible paths that
produce that sequence.4 The problem is that we do not yet know how to
calculate the probability of a path.

This is, actually, easy to do given an assumption called the Markov
assumption:

Markov Assumption The next state is conditionally independent of the
past states, given the present state.5

P (si+1|s1, s2, . . . , si) = P (si+1|si) (5.4)
4Remember that every state is connected with every other state, albeit the fact that

some transitions may have probability zero.
5Actually, this is the Markov Assumption for HMMs of order 1. If we want to take

into account, not only the previous state, but the one prior to it as well, then we would
have an HMM of order 2. The Markov assumption then would be stated somewhat like
“The next state is conditionally independent of the past states, given the previous two.”
or

P (si+1|s1, s2, . . . , si) = P (si+1|si, si−1)

The same applies for an HMM of any order n.
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In other words, the only information that is needed, for the probability of
the next state, is the previous state that the HMM was in, and none before
it.

Given the Markov Assumption we can now calculate the probability of
a path. Starting with equation 5.3 we have:

P (w1,n) =
∑

s1,n+1

P (w1,n, s1,n+1) (5.5)

=
∑

s1,n+1

P (s1)P (w1, s2|s1)P (w2, s3|w1, s1,2)

· · ·P (wn, sn+1|w1,n−1, s1,n)

(5.6)

=
∑

s1,n+1

P (w1, s2|s1)P (w2, s3|s2)P (wn, sn+1|sn) (5.7)

=
∑

s1,n+1

n∏
i=1

P (wi, si+1|si) (5.8)

=
∑

s1,n+1

n∏
i=1

P (si
wi→ si+1) (5.9)

Equation 5.6 uses conditional probabilities to expand the probabilities equa-
tion. Then, equation 5.7 takes advantage of the Markov Assumption (5.4)
and of the fact that P (s1) = 1 since s1 is always the initial state s1. Finally,
equation 5.9 simply writes the result in a more concise and digestible way.

What equation 5.9 implies, is that the probability of a path is the prod-
uct of the probabilities of the arcs followed. So if one wants to calculate
the probability of a certain path, one simply multiplies all the probabilities
of the transitions that compose that path.

5.1.1 Algorithms for Finding the Probability of a Sequence

So, now we have a way to calculate the probability of a path. Unfortu-
nately the algorithm derived from equation 5.9 has complexity on the or-
der of O((2 · l + 1) · |S|(l+1)) where |S| is the number of states in S and l

is the length of the input (or production) string. In other words it is expo-
nentially slow.

Fortunately, we can construct faster algorithms for calculating the prob-
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ability of a certain path, by using the technique of dynamic programming6.
Nevertheless we shall not delve into the details of such algorithms here.
Charniak (1993c) and Manning and Schütze (1999b) give more details on
those algorithms.

5.2 Applications of Hidden Markov Models

In the beginning of this chapter we said that Hidden Markov Models since
their introduction by Andrei A. Markov as a general statistical tool, have
found many applications in modern speech recognition and Natural Lan-
guage Processing systems.

More specifically, HMMs have been used to model trigrams and in
general n-grams (Charniak 1993c). An n-gram is a stochastic model of
a natural language, which attributes probabilities to sentences, assuming
that only the previous n − 1 words have any effect on the probability of
the next word. In case n equals 3 we have trigrams, in which case the
following equation holds:

P (wn|w1, w2, . . . , wn−1) = P (wn|wn−1, wn−2)

Hidden Markov Models have been, furthermore, successfully used in
NLP for part-of-speech tagging (Charniak 1993a; Manning and Schütze
1999a) or in cryptography (Parekh and Honavar 2000, pg. 748). They have
even been used in bioinformatics to analyze gene sequences, as Manning
and Schütze (1999a) report. Unfortunately the size of this report would
grow enormously large if we went into the details of the applications of
HMMs. The interested reader though, is encouraged to consult the books
that have been cited, or even the books that those books cite.

6(Cormen, Leiserson, and Rivest 1990a) serves excellently as an introduction to dy-
namic programming.
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Probabilistic Regular Grammars

Probabilistic Regular Grammars (PRGs) are defined exactly as Finite State
Grammars1 are defined, only that now we associate a probability with ev-
ery rule. That probability depicts how probable we think that a certain
rule is to appear in a corpus.

Before attributing any probability to the rules of a PRG we have to
bear in mind that the total sum of the probabilities of rules, expanding the
same non-terminal symbol, should equal to 1. More formally, for all rules
N j → ζ , where ζ a terminal symbol or a valid combination of terminal and
non-terminal symbols, the following equality should hold:

∀j
∑

j

P (N j → ζ) = 1 (6.1)

Here, N j stands for a non-terminal symbol. In other words our set of
non-terminal symbols is the set {N1, N2, . . . , Nn}.

Furthermore, in PRGs, there is a probability distribution over the set of
all strings that are generated by the grammar. So, if L(G) is the language
generated by G, then:∑

w∈L(G)

P (w) = 1 (6.2)

This, last equation, says that if we add the probability of every string
generated by a PRG, then the result must be 1. But, it does not give us a
clue as to how are we going to compute the probability of a string. This is
done exactly as in Probabilistic Context-Free Grammars, and is explained
in section 7.1 on page 36, so we are not going to delve into the details of it
over here for, redundancy reasons.

1See Chapter 2 on page 6, for more details on Finite State Grammars
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Probabilistic Regular Grammars are not that widely used in Statistical
Natural Language Processing, in contrast with Probabilistic Context-Free
Grammars2. Instead their equivalent manifestations, the Stochastic Au-
tomata, are being used more often. For example, the Alergia algorithm ,
described in section 6.4, uses Deterministic Stochastic Automata, in order
to infer a Probabilistic Regular Grammar.

Before though we go through the details of Stochastic Automata and
the Alergia algorithm, we shall shortly describe the connection of PRGs
and HMMs.

6.1 How PRGs are connected to HMMs

An HMM can actually be connected with a PRG. To understand how this
may be accomplished, it is crucial to see that in an HMM there is a proba-
bility distribution over strings of certain length:

∀n
∑
w1,n

P (w1,n) = 1 (6.3)

whereas in a PRG there is a probability distribution over the set of all
strings that belong in the language L produced by the grammar, as shown
in equation 6.2 on the preceding page.

For example, consider the sentence:

Mary has a brown

This sentence would have a high probability in an HMM, since it is a very
probable beginning of a sentence, whilst in a PRG it would have a very
low probability, since it is not a complete utterance.

The basic idea of how to connect a PRG to an HMM is to make the non-
terminal symbols of the PRG the states of the HMM, and the terminal sym-
bols the output symbols. So, one moves from state to state according to the
probability of the corresponding rule, and emits a symbol with a probabil-
ity equal to the probability that a certain non-terminal becomes a terminal.

Furthermore, the end of the string is represented as a special state of
the HMM, called sink , as depicted in figure 6.1 on the next page. A sink
is a state that, once one enters into it, one can never leave out of it. In

2See Chapter 7 on page 35.
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Fig. 6.1: How PRGs are connected to HMMs

order to compute the probability of a sentence, one simply computes the
probability of the path from the initial state to the sink (or final) state,
taking advantage of the algorithms mentioned in section 5.1.1 on page 25.

6.2 Stochastic Finite-state Automata

Stochastic Finite-state Automata (SFAs), are formally defined as a quadra-
ble A = (Q, Σ, q0, π) where:

• Q is a finite set of N states q0, q1, . . . , qN−1

• Σ is the finite alphabet

• q0 ∈ Q is the start state, and finally

• π is the set of probability matrices

The elements of the probability matrices, determine the probability of a
transition. Thus, pij(α) is the probability of a transition from state qi to qj

on observing the symbol α of the alphabet.

The cautious reader will have noticed that in the definition of an SFA
we made no claim about final states. The fact is that in SFAs the distinction
between accepting and non-accepting states, in contrast with the rest of the
automata examined thus far, is not that clear. A state is an accepting one,
with a given probability, which may well be zero or one, or any other real
number between them. So, for every SFA there is a vector of N elements,
πf , which represents the probability that each state is an accepting (final)
state.
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Now, for every state qi the following equality must hold∑
qj∈Q

∑
a∈Σ

pij(a) + πf (j) = 1 (6.4)

which states that, for every state, the sum of the probabilities of every out-
going transition, together with the probability that the state is an accepting
state, must be 1. For example consider the stochastic automaton depicted
in figure 6.2. For state Q0 we have two outgoing transitions with proba-
bilities p00(a) = 0.3 and p01(b) = 0.2; furthermore the probability that the
state Q0 is an accepting one is πf (0) = 0.5. Now, the sum of those probabil-
ities is 1, exactly as equation 6.4 requires. Similarly, for state Q1, we have
two outgoing transitions with probabilities p11(a) = 0.6 and p10(b) = 0.4;
the probability πf (1), that the state Q1 is an accepting one, equals 0. So the
sum is again 1.

Fig. 6.2: A Stochastic Finite-state Automaton

So, when does an automaton accept a string and when does it not? Un-
fortunately, we cannot answer such a question with certainty! The reason
is that with every string there is a probability associated, denoting how
probable is it that the automaton will accept that string. The probability
p(s) that a string s is accepted by an SFA is computed by the following two
equations:

p(s) =
∑
qj∈Q

p0j(s)πf (j) (6.5)

pij(s) =
∑
qk∈Q

∑
a∈Σ

pik(β)pkj(a) where βa = s (6.6)

Equations 6.5 and 6.6 are somewhat tricky. They provide us a recursive
way to compute the probability that an SFA will accept a string s of arbi-
trary length.
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Things will become more concrete if we consider an example. So, let’s
see what the probability is that the automaton shown in figure 6.2, will
accept the string abb. Starting with equation 6.5, we have:

p(abb) =
∑
qj∈Q

p0j(abb)πf (j)

= p00(abb)πf (0) + p01(abb)πf (1)

= p00(abb)× 0.5

The last line follows since πf (0) = 0.5 and πf (1) = 0. Now we use equation
6.6 to compute p00(ab)

p00(abb) =
∑
qk∈Q

p0k(ab)pk0(b)

= p00(ab)p00(b) + p01(ab)p10(b)

= p01(ab)× 0.4

since p00(b) = 0 and p10(b) = 0.4. Finally we compute p01(ab)

p01(ab) =
∑
qk∈Q

p0k(a)pk1(b)

= p00(a)p01(b) + p01(a)p11(b)

= 0.3× 0.2

= 0.6

So, we can conclude that:

p(abb) = p00(abb)× 0.5 = p01(ab)× 0.4× 0.5 = 0.6× 0.4× 0.5 = 0.12

or, in other words, that the automaton in figure 6.2 accepts the string abb

with probability 0.12.

6.3 Deterministic Stochastic Finite-state Automata

A Deterministic Stochastic Finite-state Automaton (DSFA) is an SFA for
which for each state qi ∈ Q and symbol α ∈ Σ there exists at most one
state qj such that pij(α) 6= 0. In other words, we cannot have two transi-
tions of nonzero probability, emitting from the same state, with the same
symbol. At least one of the transitions should have probability zero. The
SFA depicted in figure 6.2 on the page before is actually a Deterministic
Stochastic Finite-state Automaton.
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6.4 The Alergia Algorithm

The Alergia Algorithm, developed by Carrasco and Oncina, falls in the
field of grammar inference. The (regular) grammar inference problem may
be stated as follows:

Given a finite set of positive examples, sentences that belong
to the language of the target grammar G in other words, and a
finite, possibly empty, set of negative examples, sentences that
do not belong to the target grammar G, construct a grammar G

that is equivalent to the target grammar G.

The first set of positive examples is denoted as S+, whilst the second set is
denoted as S−.

Actually, the Alergia Algorithm does not infer a regular grammar, but
a DSFA which is an equivalent manifestation of a PRG. Before though we
delve into the details of the Alergia Algorithm, we have to introduce yet
another type of automata, called prefix tree automata.

6.4.1 Prefix Tree Automata

A Prefix Tree Automaton (PTA) is a Finite State Automaton, which accepts
only the sentences of a set S; that is, its language is the set S. In order to
construct a PTA from a given set S, we simply add to the initial state the
necessary paths that lead to the acceptance of the strings in S. In cases we
have common prefixes in some strings of the S, the paths on the PTA are
also common until that prefix, and then branch.

For example, consider the set S = {a, aa, abb, bb}. Then, it’s PTA is
shown in figure 6.3 on the following page

Several, algorithms, the Alergia included, need the states of the PTA
be ordered in standard order. This is done as follows: For each state we
determine the string that leads from the initial state to that state. We do the
same thing for all the states of the PTA, and we put the strings inside a set.
One can imagine that each string carries on with it the information about
the corresponding state. Now, the created set is sorted in lexicographical
order , and we number those states starting from the integer 1. Then we
return to the PTA and number its states according to the lexicographical
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Fig. 6.3: A Prefix Tree Automaton

order given to the set. Actually the states of the PTA given in figure 6.3 are
labelled in standard order.

* * *

Now that we know what a PTA is, we can continue with the Alergia Al-
gorithm. The first step actually involves the construction of a PTA from
the given set S+ of positive examples3. The states of the PTA should be
numbered in standard order, as described above.

In the next step, we have to compute the initial probabilities π and πf .4

Those probabilities are based on the relevant frequencies with which each
state and transition, of the PTA, is visited by the examples of the set S+.
For example, if state i has been visited v times and the number of strings
in the set S+ that terminate in state i is t, then

πf (i) =
t

v

Furthermore, if with u we denote the number of times that the transition
δ(qi, α) = qj was used by the strings in S+, then

pi,j(α) =
u

v

After computing the initial probabilities π and πf , the Alergia Algorithm
enters into a loop, in which it tries to merge in order the states of the PTA.

3The set S−, described on the preceding page, is not used by the Alergia Algorithm.
4See section 6.2 on page 29 for the definition of π and πf .
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What this means is that, at each step i, it tries to merge state qi with states
q0, q1, . . . , qi−1 in order. Now, the mergence is done according to two fac-
tors:

• Similarity in transition behavior

• Similarity in acceptance behavior

Similarity here is a a statistical measure, and its determination is con-
trolled by a parameter α ranging between 0 and 1. Transition behavior is
described by the states reached from the current state. Acceptance behav-
ior is described by the number of positive examples that terminate in the
current state.

At the end of each state mergence probabilities π and πf are recomputed
in the same fashion, as described before. When a complete sample is pro-
vided, the Alergia algorithm is guaranteed to converge to the target SFA
in the limit.

What about the complexity of the Alergia Algorithm? Well, in the
worst case it is of the order

O(

(∑
l∈S+

|l|

)3

) (6.7)

Or, in other words, the-worst case complexity of Alergia is cubic in the
sum of the lengths of the examples in S+ (Parekh and Honavar 2000).
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Probabilistic Context Free Grammars

Probabilistic Context Free Grammars (PCFGs) are defined as a quadruple
G = {VT , VN , N1, R} where:

• VT is a set of terminal symbols {wk}, k = 1, . . . , V

• VN is a set of non-terminal symbols {N i}, i = 1, . . . , n

• N1 ∈ VN is the start symbol

• R = {N i → ζj} is a set of rules, where ζj is a sequence of terminals
and non-terminals

Now, for every rule there is a probability associated1, such that:

∀i
∑

j

P (N i → ζj) = 1 (7.1)

Note, that when we say P (N i → ζj) we actually mean the probabil-
ity P (N i → ζj|N i). That is we are giving the probability distribution of
the daughters for a certain head. Equation 7.1 states that the sum of the
probabilities associated with the rules that expand the same non-terminal
symbol, should equal to 1.

As we have said in Chapter 1, we use Probabilistic Grammars in order
to have a measure of the plausibility of a sentence. In other words, we
want to measure what the probability of a sentence is, given a Probabilistic
Grammar. We shall see how can we compute the probability of a sentence
in section 7.1 on the following page, but before moving on, I would like to
introduce some notation.

1Manning and Schütze (1999c, pg. 382) put those probabilities into a corresponding
new set, but that makes no difference.



Chapter 7. Probabilistic Context Free Grammars 36

Fig. 7.1: N j dominates the words wa through wb

We will describe the sentence to be parsed as a sequence of words
w1w2 · · ·wn. A subsequence, wa · · ·wb of a sentence, will be denoted as
wab. If, after one or more rewriting operations, N j is written as a sequence
of words wa · · ·wb, we will say that N j dominates the words wa · · ·wb. This
situation is depicted in figure 7.1. To say that N j spans positions a through
b in the string, but not to specify what words are actually contained in this
sequence, we will write N j

ab.
With this notation in mind, we can now move forward and see how are

we going to compute the probability of a sentence.

7.1 Probability of a Sentence

In order to compute the probability of a sentence, we use the following
formula:

P (w1m) =
∑

t

P (w1m,t) =
∑

{t:yield(t)= w1m}

P (t)

where t is a parse tree of the sentence.
In other words, the probability of a sentence is the sum of the probabil-

ities of all possible parse trees for the sentence. To find the probability of
a parse tree one just multiplies the probabilities of every rule used in the
parse tree. And how do we know that? Well, this fact can be derived given
certain assumptions about subtree independence (Manning and Schütze
1999c):

Place Invariance The probability of a subtree does not depend on where in
the string the words it dominates are

∀k P (N j
k(k+1) → ζ) is the same
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Context Free The probability of a subtree does not depend on words not
dominated by the subtree

P (N j
kl → ζ| anything outside k through l) = P (N j

kl → ζ)

Ancestor Free The probability of a subtree does not depend on nodes in the
derivation outside the subtree

P (N j
kl → ζ| any ancestor nodes outside N j

kl) = P (N j
kl → ζ)

Fig. 7.2: A simple tree structure called Treebear

Having stated the independence assumptions for PCFGs, it is not that
difficult to show that the probability of a parse is the product of the prob-
abilities of all the rules used in the production of the parse tree. In other
words the probability of a parse tree τ is:

P (τ) =
∏

A→α∈P

P (A → α)Cτ (A→α) (7.2)

where Cτ (A → α) is the number of times the production A → α is used
in the parse tree τ . Nevertheless, we shall simply give an example for a
particular parse tree.

Consider the tree2 depicted in figure 7.2, which I call Treebear for no
particular reason. The probability of that tree is computed as follows:

P (Treebear) =P (A1,5, B1,3, C4,5, w1, w2, w3, w4, w5|A1,5)

=P (B1,3, C4,5|A1,5)P (w1, w2, w3|A1,5, B1,3, C4,5)·
P (w4, w5|A1,5, B1,3, C4,5, w1,3)

2The same tree is used by Charniak (1993b) to illustrate the same point.
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=P (B1,3, C4,5|A1,5)P (w1, w2, w3|B1,3)P (w4, w5|C4,5)

=P (A → BC)P (B → w1w2w3)P (C → w4w5)

Now, for every tree we can apply the same process. So, we can safely say
that the probability of a parse tree is the product of the probabilities of all
the rules used in the production of that tree.

7.2 Reasons for Studying PCFGs

Now that we have seen some the mathematical issues which lie under-
neath PCFGs, we are going to give some reasons why we study PCFGs. In
other words, in the discussion that follows, we shall see why PCFGs are
worth studying and what are their drawbacks.

7.2.1 Syntactic Ambiguity

In the first place, the reason for wanting a grammar at all, is that we can
assign a syntactic structure to a sentence and, ultimately, that syntactic
structure gives us a guide as to the semantics of the sentence. Yet, in sec-
tion 3.3 we showed that some grammars exhibit ambiguity and so certain
sentences belonging to such grammars may have more than one syntactic
trees assigned to them.

We continued our discussion by pointing out that ambiguity is not
something that we want to avoid. Instead ambiguity is able to reveal to
us different semantic readings of the same sentence, and thus is useful
for us. At the end, of course, the ambiguity should be resolved, since the
intended meaning of the sentence by its author was most probably one.

Now, if we have a PCFG instead of a CFG, then with every syntactic
tree of a sentence there will be attached a probability with it. If, further-
more, the probabilities of the rules of the PCFG were well-assigned, then
we have good reasons to choose the syntactic tree with the highest proba-
bility as the one intended by the author of the sentence.

Nevertheless, there are times that even this approach does not suit very
well and we may need the aid of the semantical analysis at some points.
For example, Charniak (1993b) reports that prepositional-phrases, statisti-
cally, attach slightly more often to noun phrases than to verb phrases, but
the factor is actually to small, and we need the meanings of the words,
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and maybe the context of the sentence, in order to decide which syntactic
structure is to be assigned in a sentence.

7.2.2 Grammar Inference

In section 6.4 we discussed about the grammar inference problem. Pinker
(1994) reports that there is growing evidence that children learn their na-
tive language without being corrected about the mistakes they make. In
other words, children make use only of positive examples in order to learn
their language. Nevertheless, it has been shown (Gold 1978) that in the
case of Natural Language Processing it is not possible to learn a CFG by
using only positive examples; one needs negative examples as well.

But it is not clear whether this is the case with PCFGs. Charniak (1993b,
pp. 80–82) believes that PCFGs may not actually need negative examples
in order to be learned. The idea behind it is quite simple. Imagine that we
have an inductive algorithm which, given only a corpus with positive ex-
amples, tries to infer a PCFG. Imagine, furthermore, a grammar that gives
high probabilities on negative examples; examples that do not lie inside
the corpus, in other words. Those probabilities of the negative examples
would have to be taken away from the positive examples, of course. Pre-
sumably, the inductive algorithm would discard such a grammar, since it
wouldn’t assign the right probabilities on the corpus.

For example, the Alergia algorithm which infers a DSFA and was de-
scribed in section 6.4, does not use any negative examples. The well known
Inside-Outside algorithm (Lari and Young 1990) infers a PCFG with the
aid of positive examples only. Nevado, Sánchez, and Benedi (2000), fur-
thermore, describe another inductive algorithm for learning a PCFG using
only positive examples.

7.2.3 Ungrammaticality

Have you ever tried to manually tag a corpus, in order to be used in some
kind of training process? If not, then you should consider yourself as a
lucky one. In case though that you did, then you most probably will have
noticed that many of the sentences that lie inside the actual corpora, are
ungrammatical ones!

The reasons are manifold, but this is not of our concern here. According
to Charniak (1993b) “Almost any string might occur in a corpus” [p. 82,
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his italics] and I tend to agree with him. The point is that ungrammatical
sentences appear so often in the corpora that we should take them under
consideration, especially if we want to consider PCFGs as language mod-
els. Now, in order to take ungrammaticality into account, we can think of
our PCFG as of consisting of two parts. The first part of the grammar cor-
responds to grammatical the sentences, and thus gives them higher prob-
abilities, whilst the second part corresponds to the ungrammatical sen-
tences and ranks them with low probabilities, since they do not appear
very often to the corpora. Surely, this does not solve the problem of un-
grammaticality, but in any case it does give us an extra degree of freedom,
when approaching such thorny problems.

7.2.4 Language Modelling

The last point that I want to make, is that PCFGs may serve as natural
language models, with some modifications. To start with, PCFGs assign
a probability to every sentence,3 and the product of those probabilities is
the probability of the corpus. Thus PCFGs can serve as a language model.

Of course, PCFGS, the way we have presented them, have severe lim-
itations as language models. They can be thought of as consisting of two
parts; the grammatical rules and the lexical rules, each rule having a cer-
tain probability. The problem arises because PCFGs are exactly this: Con-
text-free. In other words, probabilities given to certain words, do not take
into account the context in which the words appear, and thus are always
the same, despite the context. For example, consider the following sen-
tence from Chomsky,4 his only entry in Bartlett’s Familiar Quotations:

Colorless green ideas sleep furiously.

A PCFG not only happily assigns a syntactic structure to this sentence, but
it furthermore may give it a high probability, since the words constituting
this sentence have themselves high probabilities in the lexical rules. In
contrast, an n-gram model would have given a low probability to such a
sentence since the probability:

P (green|colorless)

3Even ungrammatical ones, if we are to take into account the remarks on the previous
paragraphs

4As reported in (Pinker 1994, pg. 79).
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would, presumably, be very low.

Imagine now, that we had parsed the above sentence. The noun phrase
“Colorless green ideas” would be the direct subject of the sentence, the
head of that noun phrase being the noun “ideas.” Taking that information
into account in our PCFG, we could give the sentence a low probability
since we know that ideas never sleep!

In terms of syntactic trees, what we could do, is to take the head of
every constituent into account and have the probability of a word be con-
ditioned only on the role it plays in the next higher constituent and the
head of that constituent.
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